SI 960
   HOME
*





SI 960
The Israeli Standards Institute's Standard SI 960 defines a 7-bit Hebrew code page. It is derived from, but does not conform to, ISO/IEC 646; more specifically, it follows ASCII except for the lowercase letters and backtick (`), which are replaced by the naturally ordered Hebrew alphabet. It is also known as DEC Hebrew (7-bit), because DEC standardized this character set before it became an international standard. Kermit named it hebrew-7 and HEBREW-7. The Hebrew alphabet is mapped to positions 0x60–0x7A, on top of the lowercase Latin letters (and grave accent for aleph). 7-bit Hebrew is stored in visual order. This mapping with the high bit set, i.e. with the Hebrew letters in 0xE0–0xFA, is also reflected in ISO 8859-8. Code page layout See also *ISO/IEC 646 *DEC National Replacement Character Set (NRCS) *SI 1311 The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DEC Hebrew
The DEC Hebrew character set is an 8-bit character set developed by Digital Equipment Corporation (DEC) to support the Hebrew alphabet. It was derived from DEC's Multinational Character Set (MCS) by removing the existing definitions from code points 192 to 223 and 224 to 250 and replacing code points 251 to 256 by the Hebrew letters. This range corresponds to the Hebrew range of its 7-bit counterpart, but with the high bit set. Since MCS is a predecessor of ISO/IEC 8859-1, DEC Hebrew is similar to ISO/IEC 8859-8 and the Windows code page 1255, that is, many characters in the range 160 to 191 are the same, and the Hebrew letters are at 192 to 250 in all three character sets. Code page layout See also * 8-bit DEC Greek ( Code page 1287) * 8-bit DEC Turkish ( Code page 1288) *8-bit DEC Cyrillic (KOI-8 Cyrillic) * 7-bit DEC Hebrew (SI 960 The Israeli Standards Institute's Standard SI 960 defines a 7-bit Hebrew code page. It is derived from, but does not conform to, ISO/IEC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acknowledge Character
In data networking, telecommunications, and computer buses, an acknowledgment (ACK) is a signal that is passed between communicating processes, computers, or devices to signify acknowledgment, or receipt of message, as part of a communications protocol. The negative-acknowledgement (NAK or NACK) is a signal that is sent to reject a previously received message or to indicate some kind of error. Acknowledgments and negative acknowledgments inform a sender of the receiver's state so that it can adjust its own state accordingly. Many protocols contain checksums to verify the integrity of the payload and header. Checksums are used to detect data corruption. If a message is received with an invalid checksum (that is, the data received would have a different checksum than the message had), the receiver can know that some information was corrupted. Most often, when checksums are employed, a corrupted message received will either not be served an ACK signal, or will be served a NAK sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Device Control 3
The C0 and C1 control code or control character sets define control codes for use in text by computer systems that use ASCII and derivatives of ASCII. The codes represent additional information about the text, such as the position of a cursor, an instruction to start a new line, or a message that the text has been received. C0 codes are the range 00 HEX–1FHEX and the default C0 set was originally defined in ISO 646 (ASCII). C1 codes are the range 80HEX–9FHEX and the default C1 set was originally defined in ECMA-48 (harmonized later with ISO 6429). The ISO/IEC 2022 system of specifying control and graphic characters allows other C0 and C1 sets to be available for specialized applications, but they are rarely used. C0 controls ASCII defined 32 control characters, plus a necessary extra character for the DEL character, 7FHEX or 01111111BIN (needed to punch out all the holes on a paper tape and erase it). This large number of codes was desirable at the time, as multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Device Control 2
The C0 and C1 control code or control character sets define control codes for use in text by computer systems that use ASCII and derivatives of ASCII. The codes represent additional information about the text, such as the position of a cursor, an instruction to start a new line, or a message that the text has been received. C0 codes are the range 00 HEX–1FHEX and the default C0 set was originally defined in ISO 646 (ASCII). C1 codes are the range 80HEX–9FHEX and the default C1 set was originally defined in ECMA-48 (harmonized later with ISO 6429). The ISO/IEC 2022 system of specifying control and graphic characters allows other C0 and C1 sets to be available for specialized applications, but they are rarely used. C0 controls ASCII defined 32 control characters, plus a necessary extra character for the DEL character, 7FHEX or 01111111BIN (needed to punch out all the holes on a paper tape and erase it). This large number of codes was desirable at the time, as multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Device Control 1
The C0 and C1 control code or control character sets define control codes for use in text by computer systems that use ASCII and derivatives of ASCII. The codes represent additional information about the text, such as the position of a cursor, an instruction to start a new line, or a message that the text has been received. C0 codes are the range 00 HEX–1FHEX and the default C0 set was originally defined in ISO 646 (ASCII). C1 codes are the range 80HEX–9FHEX and the default C1 set was originally defined in ECMA-48 (harmonized later with ISO 6429). The ISO/IEC 2022 system of specifying control and graphic characters allows other C0 and C1 sets to be available for specialized applications, but they are rarely used. C0 controls ASCII defined 32 control characters, plus a necessary extra character for the DEL character, 7FHEX or 01111111BIN (needed to punch out all the holes on a paper tape and erase it). This large number of codes was desirable at the time, as multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Link Escape
The C0 and C1 control code or control character sets define control codes for use in text by computer systems that use ASCII and derivatives of ASCII. The codes represent additional information about the text, such as the position of a cursor, an instruction to start a new line, or a message that the text has been received. C0 codes are the range 00 HEX–1FHEX and the default C0 set was originally defined in ISO 646 (ASCII). C1 codes are the range 80HEX–9FHEX and the default C1 set was originally defined in ECMA-48 (harmonized later with ISO 6429). The ISO/IEC 2022 system of specifying control and graphic characters allows other C0 and C1 sets to be available for specialized applications, but they are rarely used. C0 controls ASCII defined 32 control characters, plus a necessary extra character for the DEL character, 7FHEX or 01111111BIN (needed to punch out all the holes on a paper tape and erase it). This large number of codes was desirable at the time, as multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shift In
Shift Out (SO) and Shift In (SI) are ASCII control characters 14 and 15, respectively (0x0E and 0x0F). These are sometimes also called "Control-N" and "Control-O". The original meaning of those characters provided a way to shift a coloured ribbon, split longitudinally usually with red and black, up and down to the other colour in an electro-mechanical typewriter or teleprinter, such as the Teletype Model 38, to automate the same function of manual typewriters. Black was the conventional ambient default colour and so was shifted "in" or "out" with the other colour on the ribbon. Later advancements in technology instigated use of this function for switching to a different font or character set and back. This was used, for instance, in the Russian character set known as KOI7-switched, where SO starts printing Russian letters, and SI starts printing Latin letters again. Similarly, they are used for switching between Katakana and Roman letters in the 7-bit version of the Japanese JIS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shift Out
Shift Out (SO) and Shift In (SI) are ASCII control characters 14 and 15, respectively (0x0E and 0x0F). These are sometimes also called "Control-N" and "Control-O". The original meaning of those characters provided a way to shift a coloured ribbon, split longitudinally usually with red and black, up and down to the other colour in an electro-mechanical typewriter or teleprinter, such as the Teletype Model 38, to automate the same function of manual typewriters. Black was the conventional ambient default colour and so was shifted "in" or "out" with the other colour on the ribbon. Later advancements in technology instigated use of this function for switching to a different font or character set and back. This was used, for instance, in the Russian character set known as KOI7-switched, where SO starts printing Russian letters, and SI starts printing Latin letters again. Similarly, they are used for switching between Katakana and Roman letters in the 7-bit version of the Japanese JIS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carriage Return
A carriage return, sometimes known as a cartridge return and often shortened to CR, or return, is a control character or mechanism used to reset a device's position to the beginning of a line of text. It is closely associated with the line feed and newline concepts, although it can be considered separately in its own right. Typewriters Originally, the term "carriage return" referred to a mechanism or lever on a typewriter. For machines where the type element was fixed and the paper held in a moving ''carriage'', this lever was on the left attached to the moving carriage, and operated after typing a line of text to cause the carriage to return to the far right so the type element would be aligned to the left side of the paper. The lever would also usually ''feed'' the paper to advance to the next line. Many electric typewriters such as IBM Electric or Underwood Electric made carriage return to be another key on the keyboard instead of a lever. The key was usually labeled "carri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Form Feed
A page break is a marker in an electronic document that tells the document interpreter that the content which follows is part of a new page. A page break causes a form feed to be sent to the printer during spooling of the document to the printer. Thus it is one of the elements that contributes to pagination. Form feed Form feed is a page-breaking ASCII control character. It directs the printer to eject the current page and to continue printing at the top of another. Often, it will also cause a carriage return. The form feed character code is defined as 12 (0xC in hexadecimal), and may be represented as control+L or ^L. In a related use, control+L can be used to clear the screen in Unix shells such as bash. In the C programming language (and other languages derived from C), the form feed character is represented as '\f'. Unicode also provides the character as a printable symbol for a form feed (not as the form feed itself). The form feed character is considered whitespace by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertical Tab
The tab key (abbreviation of tabulator key or tabular key) on a keyboard is used to advance the cursor to the next tab stop. History The word ''tab'' derives from the word ''tabulate'', which means "to arrange data in a tabular, or table, form." When a person wanted to type a table (of numbers or text) on a typewriter, there was a lot of time-consuming and repetitive use of the space bar and backspace key. To simplify this, a horizontal bar was placed in the mechanism called the tabulator rack. Pressing the tab key would advance the carriage to the next tabulator stop. The original tabulator stops were adjustable clips that could be arranged by the user on the tabulator rack. Fredric Hillard filed a patent application for such a mechanism in 1900. The tab mechanism came into its own as a rapid and consistent way of uniformly indenting the first line of each paragraph. Often a first tab stop at 5 or 6 characters was used for this, far larger than the indentation used when ty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Feed
Newline (frequently called line ending, end of line (EOL), next line (NEL) or line break) is a control character or sequence of control characters in character encoding specifications such as ASCII, EBCDIC, Unicode, etc. This character, or a sequence of characters, is used to signify the end of a line of text and the start of a new one. History In the mid-1800s, long before the advent of teleprinters and teletype machines, Morse code operators or telegraphists invented and used Morse code prosigns to encode white space text formatting in formal written text messages. In particular the Morse prosign (mnemonic reak ext) represented by the concatenation of literal textual Morse codes "B" and "T" characters sent without the normal inter-character spacing is used in Morse code to encode and indicate a ''new line'' or ''new section'' in a formal text message. Later, in the age of modern teleprinters, standardized character set control codes were developed to aid in white space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]